Development of Novel Textile Bioreactor for Anaerobic Utilization of Flocculating Yeast for Ethanol Production

نویسندگان

  • Osagie A. Osadolor
  • Patrik R. Lennartsson
  • Mohammad J. Taherzadeh
  • Ronnie G. Willaert
چکیده

Process development, cheaper bioreactor cost, and faster fermentation rate can aid in reducing the cost of fermentation. In this article, these ideas were combined in developing a previously introduced textile bioreactor for ethanol production. The bioreactor was developed to utilize flocculating yeast for ethanol production under anaerobic conditions. A mixing system, which works without aerators, spargers, or impellers, but utilizes the liquid content in the bioreactor for suspending the flocculating yeast to form a fluidized bed, was developed and examined. It could be used with dilution rates greater than 1.0 h−1 with less possibility of washout. The flow conditions required to begin and maintain a fluidized bed were determined. Fermentation experiments with flow rate and utilization of the mixing system as process variables were carried out. The results showed enhanced mass transfer as evidenced by faster fermentation rates on experiments with complete sucrose utilization after 36 h, even at 30 times lesser flow rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of Yeast Flocculation in Biotechnological Processes

A review on the main aspects associated with yeast flocculation and its application in biotechnological processes is presented. This subject is addressed following three main aspects – the basics of yeast flocculation, the development of “new” flocculating yeast strains and bioreactor development. In what concerns the basics of yeast flocculation, the state of the art on the most relevant aspec...

متن کامل

Corrigendum: Redox potential driven aeration during very-high-gravity ethanol fermentation by using flocculating yeast

Ethanol fermentation requires oxygen to maintain high biomass and cell viability, especially under very-high-gravity (VHG) condition. In this work, fermentation redox potential (ORP) was applied to drive the aeration process at low dissolved oxygen (DO) levels, which is infeasible to be regulated by a DO sensor. The performance and characteristics of flocculating yeast grown under 300 and 260 g...

متن کامل

Relationships between hydrodynamics and rheology of flocculating yeast suspensions in a high-cell-density airlift bioreactor.

In this article a hydrodynamic and rheological analysis of a continuous airlift bioreactor with high-cell-density system is presented. A highly flocculating recombinant strain of Sacharomyces cerevisiae containing genes for lactose transport (lactose permease) and hydrolysis (beta-galactosidase) was exploited to ferment lactose from cheese whey to ethanol. The magnetic particle-tracer method wa...

متن کامل

Very high gravity ethanol fermentation by flocculating yeast under redox potential-controlled conditions

UNLABELLED BACKGROUND Very high gravity (VHG) fermentation using medium in excess of 250 g/L sugars for more than 15% (v) ethanol can save energy consumption, not only for ethanol distillation, but also for distillage treatment; however, stuck fermentation with prolonged fermentation time and more sugars unfermented is the biggest challenge. Controlling redox potential (ORP) during VHG ferme...

متن کامل

A novel high ethanol-thermo-tolerant Acetobacter pasteurianus KBMNS-IAUF-2 strain and the optimization of acetic acid production using the Taguchi statistical method

Because of the high energy consumption for fermentor cooling, the isolation of thermo-tolerant Acetobacter strains for vinegar production has a high priority. The aims of this study were the isolation and identification of a high ethanol-thermo-tolerant Acetobacter spp. from grapes as well as the optimization of conditions for increasing the acetic acid production. The grape e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015